

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 256 (2006) 106-112

www.elsevier.com/locate/molcata

Catalytic reaction of 1,3-butanediol over solid acids

Naoki Ichikawa^a, Satoshi Sato^{b,*}, Ryoji Takahashi^b, Toshiaki Sodesawa^b

^a Graduate School of Science and Technology, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan

^b Department of Applied Chemistry, Faculty of Engineering, Chiba University, Yayoi, Inage, Chiba 263-8522, Japan

Received 13 January 2006; received in revised form 12 April 2006; accepted 22 April 2006 Available online 5 June 2006

Abstract

Catalytic reaction of 1,3-butanediol over solid acids such as $SiO_2-Al_2O_3$, Al_2O_3 , ZrO_2 and TiO_2 was investigated. The catalytic activities of these acids were in good coincidence with their acid properties: strong acid catalysts, $SiO_2-Al_2O_3$ and Al_2O_3 , catalyzed dehydration of 1,3-butanediol at the reaction temperature below 250 °C, while weak acid catalysts, ZrO_2 and TiO_2 , required the temperature above 325 °C to activate 1,3-butanediol. $SiO_2-Al_2O_3$ catalyzed the dehydration of 1,3-butanediol into unsaturated alcohols, and consecutively dehydrated them into 1,3-butadiene. 4-Methyl-1,3-dioxane, which is the acetal compound of 1,3-butanediol and formaldehyde, was obtained with high selectivity over Al_2O_3 . Several compounds were produced over TiO_2 and ZrO_2 owing to the side reactions such as dehydrogenation and hydrogenation. The characteristics in the reaction were discussed in connection with other reactions of monoalcohols and of the produced unsaturated alcohols. © 2006 Elsevier B.V. All rights reserved.

Keywords: 1,3-Butanediol; Dehydration; Acid catalyst; Unsaturated alcohols

1. Introduction

Unsaturated alcohols are important compounds in industrial chemistry because they are used as raw materials and intermediates of pesticides and medicines. Selective hydrogenation of unsaturated carbonyl compounds to unsaturated alcohols have been attempted over heterogeneous catalysts such as Crmodified Raney-Ni [1], Sn-Pt/Nylon [2], M/zeolite (M = Ru, Pt, Rh) catalysts [3], Co/Al₂O₃ [4–6] and supported Au catalyst [7,8].

Recently, we have found that CeO₂ has catalytic activity for the selective dehydration of 1,3-diols [9,10] and 1,4-butanediol [11] to unsaturated alcohols. For example, 1,3-butanediol is dehydrated into 3-buten-2-ol and *trans*-2-buten-1-ol at 325 °C with selectivity of 56.9 and 35.5 mol.%, respectively [10], while activation of 1,4-butanediol requires reaction temperatures above 375 °C, and the selectivity to 3-buten-1-ol is at most 68.1 mol.% [11]. In the previous study, the mechanism of the dehydration of 1,3-butanediol over CeO₂ (111) surface was investigated, and we concluded that the oxygen-defect sites on CeO₂ (111) surface are probably the active sites

* Corresponding author. Tel.: +81 43 290 3376.

E-mail address: satoshi@faculty.chiba-u.jp (S. Sato).

1381-1169/\$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2006.04.057 for the dehydration of 1,3-butanediol to unsaturated alcohols [12,13].

Our research on the dehydration of 1,3-diols has been mainly focused on CeO_2 catalyst systems. In this paper, we investigate promising acid catalysts for the dehydration of 1,3-butanediol into unsaturated alcohols. We also discuss effects of acid–base properties of the catalysts on the catalytic activity and selectivity.

2. Experimental

We used four metal oxides such as SiO₂–Al₂O₃, Al₂O₃, ZrO₂ and rutile-TiO₂. SiO₂–Al₂O₃ (N631-L), Al₂O₃ (DC2282) and ZrO₂ (RSC-100) were supplied from Nikki Chemical, Dia Catalyst and Daiichi Kigenso Kagaku Kogyo Co. Ltd., respectively. TiO₂ was supplied by Catalysis Society of Japan, Japan Reference Catalyst TIO-3. The specific surface area of SiO₂–Al₂O₃, Al₂O₃, TiO₂ and ZrO₂ were 420, 200, 40 and 100 m² g⁻¹, respectively, which were estimated by BET method using N₂ isotherm at -196 °C.

Temperature-programmed desorptions (TPD) of NH_3 and CO_2 were performed to evaluate the acid and base properties, respectively. The numbers of acid and base sites were estimated from the neutralization-titration curves of diluted H_2SO_4 and

NaOH solution, respectively. Details of TPD procedure were described elsewhere [14,15].

1,3-Butanediol, 1-butanol and 2-butanol were purchased from Waco Pure Chemical Ind. Ltd., Japan, and unsaturated alcohols such as 3-buten-1-ol, 3-buten-2-ol and 2-buten-1-ol were purchased from Tokyo Kasei Kogyo Co. Ltd., Japan. All the reagents were used without further purification. The catalytic reactions of alcohols were carried out in a conventional fixed-bed down-flow reactor. The catalyst bed was heated in an N₂ flow at the desired reaction temperature of 200–375 °C and kept for 1 h as the pretreatment. Then, a reactant was fed into the reactor at a liquid feed rate of $1.7 \text{ cm}^3 \text{ h}^{-1}$ and it was vaporized and brought over the catalyst bed with nitrogen gas at a flow rate of 30 cm³ min⁻¹. An effluent was condensed and collected periodically with ice trap every 1 h. The effluent was analyzed by FID-GC (Shimadzu GC-8A equipped with 30 m length of TC-WAX column). Gaseous products such as 1,3-butadiene and formaldehyde were analyzed by on-line TCD-GC (Shimadzu GC-8A equipped with 6m length of VZ-7). The products were identified with GC-MS (Shimadzu GCMS-QP5050A).

Selectivity to a product, S_i , was calculated with the following equation:

$$S_i = \frac{M_i}{\sum M_i}$$

where M_i is the mole number of a product *i* in the collected effluent and was calibrated with the carbon number in the product as, M_i = (mole number of a product estimated with GC) × (carbon number in the product).

Conversion of 1,3-butanediol was slightly decreased in the initial period. Thus, the catalytic activity was evaluated by both conversion of 1,3-butanediol and selectivities to products averaged in the initial 5 h.

3. Results

Fig. 1 shows NH₃- and CO₂-TPD profiles of the catalysts, and Table 1 lists their physical properties. The desorption of NH₃ was observed over all the catalysts. SiO₂-Al₂O₃ showed the largest and asymmetric desorption peak of NH3. This asymmetry implies that SiO₂-Al₂O₃ has acid sites with different strength. We deconvoluted the desorption peak into two peaks with Gaussian fitting, as shown in Fig. 1A. The peaks centered at 279 and

Table 1 Specific surface area and acid and base property of catalysts

^a Specific surface area.

^b Temperature at which the desorption peak centered in the TPD profile.

^c Number of acid or base sites.

Fig. 1. TPD profiles of (a) SiO₂-Al₂O₃, (b) Al₂O₃, (c) TiO₂ and (d) ZrO₂. The probe molecules are (A) NH₃ and (B) CO₂. The dotted lines in 'A' are the deconvolution of the profile of SiO₂-Al₂O₃ according to Gaussian fitting.

414 °C, respectively. Al₂O₃ and TiO₂ have symmetric desorption peak of NH₃ centered at 345 and 342 °C, respectively, while the amount of acid sites of Al₂O₃ is ca. five times larger than that of TiO₂. ZrO₂ had the weakest and broad desorption peak centered at 214 °C. This suggests that ZrO₂ has the weakest acid sites and the amount is the smallest. In the CO₂-TPD, we could not confirm the desorption of CO₂ from SiO₂–Al₂O₃ and TiO₂, whereas Al₂O₃ and ZrO₂ have a small desorption peak centered around 110 °C. These results indicate that SiO₂–Al₂O₃ and ZrO₂ have more base sites on their surface, and Al₂O₃ and ZrO₂ have weak base sites together with acid ones. Hence, it was summarized that the sequences of acid and base strength of the catalysts were SiO₂–Al₂O₃ > Al₂O₃ > TiO₂, > ZrO₂, and Al₂O₃ > ZrO₂ ≫ SiO₂–Al₂O₃, TiO₂, respectively.

Fig. 2 shows the activities of the catalysts at different reaction temperatures. Conversion of 1,3-butanediol monotonously increased with increasing the reaction temperature over the acid catalysts. $SiO_2-Al_2O_3$ catalyzed the dehydration of 1,3-butanediol at the lowest reaction temperature among the catalysts. Al_2O_3 , TiO_2 and ZrO_2 required the temperature around 250, 350 and 350 °C to activate 1,3-butanediol, respectively. Table 2 summarizes the products distribution in the reaction of 1,3-butanediol over the catalysts. In this comparison, the catalysts with different specific surface areas were tested at the same space velocity. When 1.5 g of TiO₂ was used as being the same surface area as $SiO_2-Al_2O_3$, the conversion of 1,3-butanediol was at most 32% at 325 °C (dotted line in Fig. 2).

3-Buten-1-ol was the major product over $SiO_2-Al_2O_3$, TiO_2 and ZrO_2 at any temperatures. Formaldehyde and 4-methyl-1,3-dioxane, however, were mainly obtained over Al_2O_3 . With increasing the reaction temperature, the selectivity to 1,3butadiene, the consecutive dehydration product from unsaturated alcohols, increased while that to unsaturated ethers, the bimolecular dehydration products from unsaturated alcohols, decreased over $SiO_2-Al_2O_3$. TiO_2 and ZrO_2 exhibited similar

Table 2

Fig. 2. Relationship between 1,3-butanediol conversion and reaction temperature over several metal-oxide catalysts. $SiO_2-Al_2O_3$ (open circle), Al_2O_3 (closed circle), TiO_2 (open triangle), ZrO_2 (closed triangle). Solid line, 0.15 g of catalyst was used; dotted line, 1.5 g of TiO₂ was used.

conversion level of 1,3-butanediol at the same reaction temperature. Compounds such as 3-buten-2-one, 2-butenal, 1-butanol and 2-butanol were produced via dehydrogenation and/or hydrogenation and were obtained with relatively large selectivities over TiO_2 and ZrO_2 . Over ZrO_2 , 3-buten-2-ol is preferably produced compared to the other catalysts, where 3-buten-2-one and butanone are major by-products.

We tested the dehydration of 1-butanol and 2-butanol in order to confirm the difference in reactivity of OH groups of the butanols. Tables 3 and 4 summarize the reaction results of 1and 2-butanols over $SiO_2-Al_2O_3$, TiO_2 and ZrO_2 , respectively. In the reaction of 1-butanol, $SiO_2-Al_2O_3$ exhibited the highest activity even though the reaction temperature over $SiO_2-Al_2O_3$ was lower than that over TiO_2 and ZrO_2 by $125 \,^{\circ}C$. TiO_2

Catalyst	Temperature (°C)	Conv. (%)	Selec	Selectivity ^a (mol.%)															
			Group I				Group II			Group III		Group IV		Group V					
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
SiO ₂ -Al ₂ O ₃	200	18.6	43.8	14.2	2.1	19.6	12.1	0	0	0	5.5	1.3	0	0	1.4	0	0	0	0
	225	45.9	36.7	9.6	3.2	30.0	3.0	2.4	3.5	0	6.4	2.4	0	0	2.8	0	0	0	0
	250	74.3	27.7	3.2	2.9	36.0	1.2	0.3	7.7	3.8	6.6	4.1	1.5	0.3	3.5	0	0.2	0.6	0.4
Al ₂ O ₃	225	4.7	25.8	9.2	0	0	0	0	31.0	0	28.8	0	0	0	0	5.2	0	0	0
	250	49.3	15.4	4.4	0	0	0	0.9	27.9	1.1	18.4	8.6	9.5	0	2.0	6.5	0	3.1	2.2
	275	89.1	17.0	2.2	0	0	0.	0.8	28.3	2.3	22.1	7.5	2.5	0	0.3	5.2	0.6	7.2	4.0
TiO ₂	325	8.4	27.3	19.6	4.9	0	0.	4.4	0	0	0	13.5	3.4	7.3	9.1	10.5	0	0	0
	350	55.7	20.8	10.5	2.8	0	0	2.4	5.3	3.5	0	18.6	1.2	9.5	11.8	8.4	0.7	3.1	1.4
	375	84.0	30.2	7.3	2.1	0	0	2.0	11.8	4.2	0	16.0	3.7	4.1	5.3	6.6	1.9	3.0	1.8
ZrO ₂	325	25.3	25.9	18.7	16.3	0	0	0.6	0	8.1	0	14.0	5.3	2.3	1.7	0	0	3.1	4.0
	350	57.3	18.3	14.5	12.6	3.1	0	0	2.7	11.0	0	11.4	9.9	5.0	2.4	0	0.8	4.7	3.6
	375	71.4	20.0	9.6	12.1	3.9	0	0.9	0	15.4	0	13.8	9.3	4.7	2.9	0	1.2	2.4	3.8

Reaction conditions: catalyst weight, 0.150 g; reactant feed rate, 1.7 cm³ h⁻¹; carrier gas, N₂ (30 cm³ min⁻¹).

^a 1: 3-buten-1-ol, 2: 2-buten-1-ol, 3: 3-buten-2-ol, 4: 1,3-butadiene, 5: unsaturated ethers, 6: propanone, 7: formaldehyde, 8: methanol, 9: 4-methyl-1,3-dioxane, 10: 3-buten-2-one, 11: butanone, 12: 2-butanol, 13: 1-butanol, 14: 2-butenal, 15: butanal, 16: acetaldehyde, 17: ethanol.

Reaction of 1,3-butanediol over various catalysts

Table 3				
Reaction	of 1-butanol ov	er SiO ₂ -Al ₂ O	O_3 , Ti O_2	and ZrO2 ^a

Catalyst	Temperature ^b (°C)	Conv. ^c (%)	Selectivity (mol.%)									
			1-Butene	trans-2-Butene	cis-2-Butene	Butanal	Ether ^d	Ester ^e	Othersf			
SiO ₂ -Al ₂ O ₃ .	225	28.4	24.9	36.0	32.2	2.8	0.2	0.2	3.7			
TiO ₂	350	11.7	52.7	11.4	15.9	7.5	2.6	0.4	5.2			
ZrO ₂	350	3.3	59.2	0	0	11.7	2.4	22.2	4.5			

^a The reaction conditions are the same as those in Table 2.

^b Reaction temperature.

^c Conversion.

^d Di-*n*-butyl ether.

^e Butyl butyrate.

^f Others are unidentified.

Table 4

Reaction of 2-butanol over SiO2-Al2O3, TiO2 and ZrO2ª

Catalyst	Temperature ^b (°C)	Conv. ^c (%)	Selectivity (mol.%)							
			1-Butene	trans-2-Butene	cis-2-Butene	Butanone	Others ^d			
SiO ₂ -Al ₂ O ₃	225	76.1	14.4	45.3	37.8	1.0	1.5			
TiO ₂	350	63.8	31.0	18.4	41.3	7.5	1.8			
ZrO ₂	350	39.2	70.5	7.5	8.9	10.4	2.7			

^a The reaction conditions are the same as those in Table 2.

^b Reaction temperature.

^c Conversion.

^d Others are not identified.

showed moderate activity and ZrO₂ hardly activated 1-butanol at 350 °C. 2-Butenes were mainly produced over SiO₂-Al₂O₃, while 1-butene was predominantly obtained over TiO₂ and ZrO₂. We note that butyl butyrate was produced over ZrO₂ with the selectivity of 22.2 mol.%. In the reaction of 2-butanol, the catalytic activity was the same order as the case of 1-butanol, i.e. SiO₂-Al₂O₃ > TiO₂ > ZrO₂. *cis*-2-Butene was mainly produced over SiO₂-Al₂O₃ and TiO₂, whereas 1-butene was obtained with the largest selectivity over ZrO₂. The reactivity of 2-butanol was much higher than 1-butanol over the catalysts.

We also examined the reactivity of unsaturated alcohols over $SiO_2-Al_2O_3$ and TiO_2 . The results over $SiO_2-Al_2O_3$ and TiO_2 are listed in Tables 5 and 6, respectively. Over $SiO_2-Al_2O_3$, 2-buten-1-ol and 3-buten-2-ol were predominantly dehydrated into 1,3-butadiene at the same conversion level (Table 5). On the other hand, 3-buten-1-ol was subject to decomposition to produce propene and formaldehyde with the highest selectivity and the dehydration into 1,3-butadiene did not readily proceed. The reactivity of 3-buten-1-ol was lower than those of 2-buten-1-ol

Table 5
Reaction of unsaturated alcohols over SiO2-Al2O3 at 250 °Ca

Reactant	Conv. (%)	Selectivity ^b (mol.%)
1	41.5	18 ^c (58.0), 4 (12.8), 14 (11.0), 15 (6.9), 8 (5.6)
2	76.7	4 (92.8), 14 (5.3)
3	70.8	4 (93.0), 2 (2.6), 6 (2.0)

^a The reaction was carried out under following conditions: catalyst weight, 0.300 g; reactant feed rate, $1.7 \text{ cm}^3 \text{ h}^{-1}$; carrier gas, N₂ (30 cm³ min⁻¹).

^b Numbers of the reactants and of the products except **18** are the same as those in Table 2, and numbers in parentheses indicate the selectivity.

^c Propene.

Table 6

Reaction of unsaturated alcohols over TiO2 at 375 $^\circ C^a$

Reactant	Conv. (%)	Selectivity ^b (mol.%)
1	38.2	4 (50.0), 16 (13.2), 8 (11.4), 14 (8.1), 13 (4.0)
2	53.3	4 (71.3), 14 (11.9), 8 (3.3)
3	70.2	4 (70.2), 10 (10.7), 11 (4.0)

^a The reaction conditions are the same as those in Table 5 except for the temperature.

^b Numbers of the reactants and of the products are the same as those in Table 2, and numbers in parentheses indicate the selectivity.

and 3-buten-2-ol. In contrast, the reactivity of the unsaturated alcohols over TiO_2 was summarized as the following sequence: 3-buten-2-ol>2-buten-1-ol>3-buten-1-ol (Table 6). The consecutive dehydration into 1,3-butadiene proceeded for all the unsaturated alcohols over TiO_2 , while the several side reactions were also promoted. Thus, the products distribution was very complex.

4. Discussion

4.1. Reaction of monoalcohols over catalysts with different acid–base properties

The reaction of 1- and 2-butanols was carried out over $SiO_2-Al_2O_3$, TiO_2 and ZrO_2 to discuss the reaction mechanism of 1,3-butanediol dehydration (Tables 3 and 4). It should be noted that 2-butanol is more reactive than 1-butanol. This result suggests that the dehydration proceeds via carbocation as the intermediate: a secondary carbocation, which is produced by the elimination of OH group from 2-butanol, is more stable

Scheme 1. Probable reaction pathway from 1,3-butanediol to products over catalysts. Numbers under the products are the same as those in Table 1.

than primary one derived from 1-butanol. Saytzeff products are mainly obtained with acid-catalyzed mechanism [16], and 2butene, Saytzeff product, was mainly produced from 2-butanol. The products distribution from butanols over acidic $SiO_2-Al_2O_3$ and TiO_2 also supports the acid-catalyzed mechanism. 1-Butene is, however, selectively produced from 2-butanol over ZrO_2 . It is known that ZrO_2 gives Hoffmann products from 2-alcohols [17,18]. We should note that butyl butyrate is produced with a moderate selectivity from 1-butanol over ZrO_2 . It is reasonable that the reaction from 1-butanol to butyl butyrate proceeds via either Tishchenko reaction of *n*-butylaldehyde [19] or hemiacetal formation [20–22].

4.2. Reaction of 1,3-butanediol over SiO₂-Al₂O₃

In this study, four catalysts with different acid–base properties were employed to investigate the effects of these properties on the reaction of 1,3-butanediol. SiO₂–Al₂O₃ shows the highest activity because it catalyzes the dehydration of 1,3-butanediol at the lowest temperature among the catalysts we tested. Then, the sequence of the catalytic activity can be summarized as follows; SiO₂–Al₂O₃ > Al₂O₃ \gg TiO₂ \simeq ZrO₂ (Fig. 2). This is in good coincidence with the acid property of catalysts: the strongest acid catalyst, SiO₂–Al₂O₃, exhibited the highest activity for the reaction of 1,3-butanediol. These results imply that the dehydration of 1,3-butanediol is catalyzed at acid sites of the catalysts. We have already reported the dehydration of 1,3-diols over CeO₂ catalyst [9,10,12,13] and conclude that the reaction is promoted by radical mechanism [10,12]. Judging from the products distribution, 1,3-butanediol would be activated with different mechanism between acid catalysts and CeO₂. 3-Buten-2-ol and *trans*-2-buten-1-ol are selectively produced over CeO₂, while 3-buten-1-ol is preferably obtained over acid SiO₂-Al₂O₃, which is the strong acid catalyst with no base sites on its surface (Fig. 1).

Alcohols are dehydrated to give Saytzeff products over acid catalysts, as mentioned in the previous section [16]. Thus, 2buten-1-ol should have been produced as the main dehydrated products over acid catalysts in the dehydration of 1,3-butanediol. We elucidated that unsaturated alcohols are consecutively dehydrated to produce 1,3-butadiene over $SiO_2-Al_2O_3$ (Table 5). The selectivity to 1,3-butadiene increased with increasing the conversion of 1,3-butanediol while those to unsaturated alcohols decreased (Table 2). 1,3-Butadiene could be produced from the unsaturated alcohols over $SiO_2-Al_2O_3$, while 3-buten-1-ol is less reactive than 2-buten-1-ol and 3-buten-2-ol (Table 5). Thus, 3-buten-1-ol remains in the reaction mixture of 1,3-butanediol (Table 2). The high selectivity to 3-buten-1-ol is probably caused by the faster consumption rate of 2-buten-1-ol than that of 3-buten-1-ol.

In addition, we observed the production of propene in the decomposition of 3-buten-1-ol over $SiO_2-Al_2O_3$ (Table 5). However, propene was not observed in the reaction of 1,3-

butanediol (Table 2). This difference is probably attributed to the conditions for each reactant: the reaction of unsaturated alcohols was performed at the residence-time twice as long as that of 1,3-butanediol, i.e. using twice amount of catalyst weight, and at high temperature of 250 °C. Such severe conditions may promote the production of propene from 3-buten-1-ol over SiO₂–Al₂O₃.

4.3. Reaction of 1,3-butanediol over other metal oxides

We summarize the probable reaction pathways from 1,3butanediol to products detected in this work, as shown in Scheme 1. Al₂O₃ showed unique catalytic performance in the reaction of 1,3-butanediol: 4-methyl-1,3-dioxane and formaldehyde were obtained with moderate selectivities (Table 2). 4-Methyl-1,3-dioxane can be produced via acetalization of formaldehyde with 1,3-butanediol. Formaldehyde would be produced via the reverse-aldol reaction of 4-hydroxy-2-butanone, which is produced by dehydrogenation of OH group at 3-position in 1,3-butanediol. Then, we face a puzzling question: propanone should be produced by the decomposition of 4-hydroxy-2butanone. However, the amount of propanone does not make up with that of formaldehyde (Table 2). At this point, we cannot explain the phenomena.

3-Buten-1-ol is the main product from 1,3-butanediol over TiO₂, while 2-buten-1-ol is produced with high selectivity and 3-buten-2-ol is rarely produced (Table 2). The lower selectivity to 2-buten-1-ol is not attributed to the consecutive dehydration into 1,3-butadiene because it was not formed over TiO₂. In the reaction of 2-butanol over TiO₂, *cis*-2-butene was mainly obtained, and the selectivity to 1-buene was higher than that to *trans*-2-butene (Table 4). In the reaction of 1,3-butanediol, however, *cis*-2-buten-1-ol was less selective than *trans*-2-butene 1-ol; the selectivities to *cis*- and *trans*-2-buten-1-ol were 3.2 and 8.0 mol.% at 350 °C, respectively. The formation of *cis*-2-buten-1-ol could be restricted by steric hindrance induced by the OH group at 3-position in 1,3-butanediol, and thus, 3-buten-1-ol would be mainly produced over TiO₂.

Although ZrO₂ has the weakest acid sites among the catalysts employed in this study, its activity is comparable to that of TiO_2 (Fig. 1). Thus, the dehydration of 1,3-butanediol probably does not proceed with the simple acid-catalyzed mechanism over ZrO₂. Recently, we have reported the selective dehydration of 1,4-butanediol into 3-buten-1-ol over ZrO₂ and concluded that the acid-base property of ZrO2 played a crucial roll in the reaction [23]. It is speculated that 1,3-butanediol is dehydrated in the same mechanism as in the case of 1,4-butanediol. Then, we can emphasize that the acid-base concerted mechanism rather than simple acid catalysis possibly elucidates the high selectivity to 3-buten-2-ol over ZrO₂ (Table 1). The primary OH group in 1,3butanediol can be readily activated in the mechanism because 1,4-butanediol, which has two primary OH groups, is dehydrated into 3-buten-1-ol [23,24]. In the acid-catalyzed dehydration, primary OH group is less reactive, as mentioned in Section 4.1.

Over TiO_2 and ZrO_2 , the products distribution was very complex (Table 2). The complexity is caused by the side reactions, i.e. hydrogenation and dehydrogenation. 3-Buten-2-one is the

major by-product from 1,3-butanediol over TiO₂ and ZrO₂, and it can be synthesized via two routes: one is the dehydration of 4-hydroxy-2-butanone produced by dehydrogenation of 1,3butanediol, and another is the dehydrogenation of 3-buten-2-ol. It is deduced that the former route is highly probable because TiO₂ rarely catalyzed the dehydration of 1,3-butanediol into 1,3-butadiene (Table 2). Although 3-buten-2-one was produced with the selectivity of 10.7 mol.% in the reaction of 3-buten-2ol over TiO₂ (Table 6), 3-buten-2-ol is readily dehydrated into 1,3-butadiene. We have reported the dehydration of 4-hydroxy-2-butanone over TiO₂, and it is dehydrated at the reaction temperature as low as 160 °C [25]. The produced 3-buten-2-one is probably hydrogenated into butanone, and it may be further hydrogenated to produce 2-butanol. 2-Butanol can also be produced by the hydrogenation of 3-buten-2-ol.

Here, we can categorize the products in five groups, as shown in Table 2 and Scheme 1:

Group I: unsaturated alcohols, 1,3-butadiene and unsaturated ethers;

Group II: propanone, formaldehyde, methanol and 4-methyl-1,3-dioxane;

Group III: 3-buten-2-one, butanone and 2-butanol;

Group IV: 1-butanol, 2-butenal and butanal;

Group V: acetaldehyde and ethanol.

Taking the discussion so far into account, we can consider that the products in Groups I–V are formed via the following routes:

Group I: dehydration of 1,3-butanediol;

Group II: decomposition of 4-hydroxy-2-butanone, which is formed via the dehydrogenation of secondary OH group in 1,3-butanediol;

Group III: dehydration of 4-hydroxy-2-butanone;

Group IV: consecutive hydrogenation and dehydrogenation of Group I unsaturated alcohols;

Group V: decomposition of acetaldol, which is produced via the dehydrogenation of primary OH group in 1,3-butanediol.

 $SiO_2-Al_2O_3$ predominantly produces the Group I products owing to its strong acidity. Al_2O_3 preferably produces the Group II products. It is probably caused by its high basicity. TiO_2 and ZrO_2 mainly form the products in Group I, while moderate formation of the products in Groups II–IV, which implies that they have not only the dehydration ability but also hydrogenation/dehydrogenation ability. Over all the catalysts, the products in Group V are rarely produced, probably due to the low dehydrogenation susceptibility of the primary OH group in 1,3butanediol.

5. Conclusion

Reaction of 1,3-butanediol over several catalysts with different acid–base properties was investigated. The catalytic activity was ruled by its acid strength. The strong acid sites of SiO_2 –Al₂O₃ catalyzed the dehydration of 1,3-butanediol into unsaturated alcohols, which were further dehydrated into 1,3butadiene at high conversion level. The weak acidic catalysts, TiO_2 and ZrO_2 , promoted not only the dehydration of 1,3butanediol but also several side reactions such as hydrogenation and dehydrogenation. Thus, the products distribution was complex over these catalysts. Al₂O₃ enhanced the decomposition of 1,3-butanediol into formaldehyde, which reacted with 1,3butanediol to form an acetal compound, 4-methyl-1,3-dioxane. As the consequence, the acidic catalysts hardly controlled the selectivity to a specific product.

Acknowledgements

This work was partly supported by the Grant-in-Aid for Scientific Research B (16360398) from the Japan Society for the Promotion of Science.

References

- [1] P.S. Gradeff, G. Formica, Tetrahedron Lett. 17 (1976) 4681-4684.
- [2] Z. Poltarzewski, S. Galvagno, R. Pietropaolo, P. Staiti, J. Catal. 102 (1986) 190–198.
- [3] D.G. Blackmond, R. Oukaci, B. Blanc, P. Gallezot, J. Catal. 131 (1991) 401–411.
- [4] C. Ando, H. Kurokawa, H. Miura, Appl. Catal. A 185 (1999) L181–L183.
- [5] C. Ando, A. Ikumoto, H. Kurokawa, K. Sugiyama, H. Miura, Catal. Commun. 2 (2001) 323–327.
- [6] H. Kurokawa, K. Mori, K. Yoshida, M. Ohshima, K. Sugiyama, H. Miura, Catal. Commun. 6 (2005) 766–769.

- [7] C. Milone, R. Ingoglia, A. Pistone, G. Neri, F. Frusteri, S. Galvagno, J. Catal. 222 (2004) 348–356.
- [8] P. Claus, Appl. Catal. A 291 (2005) 222-229.
- [9] S. Sato, R. Takahashi, T. Sodesdawa, N. Honda, H. Shimizu, Catal. Commun. 4 (2003) 77–81.
- [10] S. Sato, R. Takahashi, T. Sodesdawa, N. Honda, J. Mol. Catal. A 221 (2004) 177–183.
- [11] S. Sato, R. Takahashi, T. Sodesdawa, N. Yamamoto, Catal. Commun. 5 (2004) 397–400.
- [12] N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa, H. Fujita, T. Atoguchi, A. Shiga, J. Catal. 239 (2006) 13–22.
- [13] A. Igarashi, N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa, Appl. Catal. A 300 (2006) 50–57.
- [14] S. Sato, K. Takematsu, T. Sodesawa, F. Nozaki, Bull. Chem. Soc. Jpn. 65 (1992) 1486–1490.
- [15] S. Sato, K. Koizumi, F. Nozaki, J. Catal. 178 (1998) 264-274.
- [16] J. McMurry, Fundamentals of Organic Chemistry, third ed., Brooks/Cole, California, 1994.
- [17] B.H. Davis, P. Ganesan, Ind. Eng. Chem. Prod. Res. Dev. 18 (1979) 191–198.
- [18] S. Chokkaram, B.H. Davis, J. Mol. Catal. A 118 (1997) 89-99.
- [19] H. Hattori, Appl. Catal. A 222 (2001) 247-259.
- [20] N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa, K. Inui, J. Mol. Catal. A 212 (2004) 197–203.
- [21] K. Inui, T. Kurabayashi, S. Sato, J. Catal. 212 (2002) 207-215.
- [22] K. Inui, T. Kurabayashi, S. Sato, N. Ichikawa, J. Mol. Catal. A 216 (2004) 147–156.
- [23] N. Yamamoto, S. Sato, R. Takahashi, K. Inui, J. Mol. Catal. A 243 (2006) 52–59.
- [24] N. Yamamoto, S. Sato, R. Takahashi, K. Inui, Catal. Commun. 6 (2005) 480–484.
- [25] N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa, Catal. Commun. 6 (2005) 19–22.